Secretome of the Biocontrol Agent Metarhizium anisopliae Induced by the Cuticle of the Cotton Pest Dysdercus peruvianus Reveals New Insights into Infection
نویسندگان
چکیده
Metarhizium anisopliae is an entomopathogenic fungus that has evolved specialized strategies to infect insect hosts. Here we analyzed secreted proteins related to Dysdercus peruvianus infection. Using shotgun proteomics, abundance changes in 71 proteins were identified after exposure to host cuticle. Among these proteins were classical fungal effectors secreted by pathogens to degrade physical barriers and alter host physiology. These include lipolytic enzymes, Pr1A, B, C, I, and J proteases, ROS-related proteins, oxidorreductases, and signaling proteins. Protein interaction networks were generated postulating interesting candidates for further studies, including Pr1C, based on possible functional interactions. On the basis of these results, we propose that M. anisopliae is degrading host components and actively secreting proteins to manage the physiology of the host. Interestingly, the secretion of these factors occurs in the absence of a host response. The findings presented here are an important step in understanding the host-pathogen interaction and developing more efficient biocontrol of D. peruvianus by M. anisopliae.
منابع مشابه
Genome Sequencing and Comparative Transcriptomics of the Model Entomopathogenic Fungi Metarhizium anisopliae and M. acridum
Metarhizium spp. are being used as environmentally friendly alternatives to chemical insecticides, as model systems for studying insect-fungus interactions, and as a resource of genes for biotechnology. We present a comparative analysis of the genome sequences of the broad-spectrum insect pathogen Metarhizium anisopliae and the acridid-specific M. acridum. Whole-genome analyses indicate that th...
متن کاملScanning Electron Microscopy (SEM) analysis and biological control of Ixodes ricinus using entomopathogenic fungi
In the present study, pathogenicity of four native strains of Entomopathogenic fungus; Metarhizium anisopliae, was studied against adult stage of Ixodes ricinus. For this purpose a total number of 180 adult ticks were examined in triplicate. Thirty ticks for each strain and negative and positive controls were immersed in 2.4×107 fungal conidia/ml in vitro. Samples were incubated in separate Pet...
متن کاملVirulence of Entomopathogenic Fungi Metarhizium anisopliae and Paecilomyces fumosoroseus for the Microbial Control of Spodoptera exigua
The beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae) is difficult to control using chemical insecticides because of the development of insecticide resistance. Several pest control agents are used to control the beet armyworm. Entomopathogenic fungi are one of the candidates for eco-friendly pest control instead of chemical control agents. In this study, among various entomopathogenic fu...
متن کاملPartial characterization of specific inducers of a cuticle-degrading protease from the insect pathogenic fungus Metarhizium anisopliae.
The insect pathogenic fungus Metarhizium anisopliae produces several extracellular cuticle-degrading proteases and evidence is consistent with one of these, PR1, which is a chymoelastase, being a determinant of pathogenicity. We have shown previously that PR1 production is regulated by both carbon catabolite and nitrogen metabolite repression and also by specific induction under derepressed con...
متن کاملExpressed sequence tag (EST) analysis of two subspecies of Metarhizium anisopliae reveals a plethora of secreted proteins with potential activity in insect hosts.
Expressed sequence tag (EST) libraries for Metarhizium anisopliae, the causative agent of green muscardine disease, were developed from the broad host-range pathogen Metarhizium anisopliae sf. anisopliae and the specific grasshopper pathogen, M. anisopliae sf. acridum. Approximately 1,700 5' end sequences from each subspecies were generated from cDNA libraries representing fungi grown under con...
متن کامل